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Abstract-The possibility of using a heat exchanger system to control the flow of glass through a platinum 
downspout is investigated. Downspouts are used in place of refractory throats since they avoid some of 
the problems associated with throats. It is assumed that the flow is predominantly axial and an integral 
expression for the flow field is obtained. The temperature distribution in the glass is calculated using the 
finite difference method. The formulation of the heat transfer problem includes a detailed analysis of the 

anisotropic radiation field in the glass. 

1. INTRODUCTION 

SOME GLASS tank furnaces of the ‘mixed melter’ type 
[I] are currently fitted with platinum downspouts, as 
outlets for the glass. The intention is to enable the 
extraction of the glass from the furnace to take place 
under the action of gravity forces. These furnaces are 
hexagonal in cross-section and have outputs of the 
order of 3 tonnes per day. The downspout is a circular 
tube of approximately 20 cm in length and 2 cm in 
diameter. Since the tube is made from platinum it has 
the advantage that it is strongly resistant to corrosion 
and therefore does not contaminate the glass. Down- 
spouts are used in place of refractory throats. Throats 
are a weak point of traditional furnace design for 
two reasons. Firstly, because they are vulnerable to 
wear and therefore limit the operational lifetimes of 
furnaces. Secondly, if the continuous operation of 
glass manufacture is disrupted then there is a danger 
that the glass in the throat will freeze and render the 
furnace inoperable. Both of these problems can be 
overcome by use of a downspout. 

The purpose of this paper is to investigate the possi- 
bility of using a heat exchanger system to control the 
flow rate through a downspout. The Navier-Stokes 
equations in the form that allows for spatial variations 
in viscosity are taken as a starting point and it is 
assumed that the flow is predominantly axial. An ana- 
lytic solution for the flow field in the glass is then 
obtained. The pressure gradient is determined as a 
function of axial position from the condition that the 
mass flow rate through the tube must be a constant; 
since the variation in density will be small, the mass 
flow rate is effectively the same as the volume flow 
rate. 

Numerical solutions for the temperature dis- 
tribution in the downspout are computed using the 
finite difference method. This technique has been used 

in the past to predict isotherm patterns inside tank 
furnaces [2] and also to compute temperature dis- 
tributions in plate glass under a variety of different 
boundary conditions [3]. One further consideration 
here is that the diameter of a downspout is so small 
that the radiation field cannot be assumed isotropic. 
The Rosseland approximation used to calculate the 
contribution of radiation to heat transfer in glass fur- 
nace models is therefore unsuitable. The radiative flux 
must therefore be calculated from the full form of the 
radiative transport equation. This is integrated twice 
by parts to separate out the Rosseland approximation 
and some additional differential terms. The remaining 
integral term is then small and can be calculated using 
a simple iterative scheme. 

To simulate cooling in the downspout it is assumed 
that the glass enters at a constant temperature and 
loses heat through the platinum. The inside wall of 
the downspout is itself modelled as an isothermal 
surface. The analysis has two main objectives. The 
first is to calculate flow and temperature fields in the 
glass as a function of time and to explain some of their 
features. The second is to determine the relationship 
between the degree of cooling that is applied to the 
downspout and the flow rate through it. This includes 
a calculation of the minimum amount of cooling that 
is needed in order to shut the flow off completely. 

2. THE EQUATIONS OF MOTION 

A downspout consists of a platinum tube of uni- 
form circular cross-section (see Fig. 1). This is inserted 
through the bottom of a tank furnace and forms an 
outlet for the glass. The excess pressure at the top of 
the downspout is determined by the depth H of the 
melt in the furnace and may be expressed as 

P. = f@ 
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NOMENCLATURE 

exp (-A), B, T’ constants in the formula % refractive index 
for viscosity of glass (P. K, K) q, yr radiative flux vector and r-component 

a radius of downspout [m] [Wrn-‘1 

CP specific heat at constant pressure (r, Z) cylindrical polar coordinates 
[J kg- ’ K- ‘1 Re Reynolds number 

g,g acceleration due to gravity [m s- ‘1 s, sf, so path length, and its origin [m] 
H depth of melt in furnace [m] ; Heaviside S source function [W m-‘1 

step function t time [s] 
I, I, intensity [W rn- ‘1 T,, T0 constants [K] 
I,. I>, I,, R. U,,. Fi, A, A* special integrals, T temperature [K] 

defined in the text u, (u, 11, ii’) velocity vector [m s- ‘1 
k thermal conductivity of the glass ri volume rate of flow [m’ s- ‘I. 

[J mm ’ s- ’ K- ‘1 
k coefficient of radiative conductivity 

[J m-’ ss’ K-‘1 
Ki,, repeated integrals of K,, the modified 

Bessel function of the second kind Greek symbols 
L length of downspout [m] u defined in text following equation (18) 
m, m, unit vector in direction of radiation T, x, 4, Y, X constants [W m-l], [m- ‘I. 

intensity and r-component [-1, [J m-’ s-’ Km’], [W m-‘1 
M, P heat dissipation Iw], mass flow rate & coefficient of emissivity of platinum 

[kg s- ‘I 0 angle of inclination 
P pressure [N m- ‘1 v viscosity of glass [P] 
PI pressure at the top of the downspout P density of glass [kg mm 3] 

[N m-‘1 CT Stefan-Boltzmann constant [w m-’ K-“1 
PO reference pressure at bottom of downspout @ azimuth angle 

Ir\r m-l] R surface of the unit sphere. 

where p is the density of the glass and g is the accel- The flow rate through a downspout can be influ- 
eration due to gravity. The reference pressure at the enced using a heat exchanger system. One possible 
bottom of the downspout is given by p,, = 0. form of this device is indicated in Fig. I and consists 
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of a metal coil (or jacket) fixed around the down- 
spout. Compressed air is circulated through the heat 
exchanger and cools the glass. The effect of this on 
viscosity can be studied through the Fulcher- 
Tamman equation 

\ 
p = exp{B/(T-T’)-A} 

where A, B and T’ are constants which depend on the 
chemical composition of the glass and T is tempera- 
ture. It is instructive to note that the solidification of 
glass is a gradual process and is characterised by a 
dicontinuous change in viscosity. One useful conse- 
quence of this is that the cooling of glass in a down- 
spout does not have to be treated as a two phase 
problem. No appeal to ideas about moving boun- 
daries need therefore be made. 

Flow in a downspout is usually characterised by a 
low Reynolds number (Re << 1). The implications of 
this are first that the flow is laminar and second that 

! c0010nt the inertial terms in the Navier-Stokes equations 
describing the flow can be neglected [4]. In vector 

FIG. I. Geometry of the aownspout. notation the equations of motion for the glass can 
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therefore be expressed as 

v-u=0 

and 

vp+pg = pv’u+2v~~*vu+v~x (Vxu) (1) 

where u = (u, D, W) is the fluid velocity. The first of 
these results is a description of the incompressibility 
of the glass. Expression (I) is the set of Navier-Stokes 
equations for an incompressible Newtonian fluid [5]. 
The density of the glass has been assumed constant in 
both these results. Natural convection in the tube can 
be neglected because the forced convection due to 
gravity forces is a much more important process. 

3. CALCULATION OF THE FLOW FIELD 

The flow in a downspout is axisymmetric. Since the 
length L of the downspout is much larger than its 
radius a it is also reasonable to assume that the flow 
is predominantly axial. Hence in terms of cylindrical 
polar coordinates (r, z) equation (I) can be simplified 
to give 

dp -=O 
dr 

and 

(2) 

having neglected all terms containing a radial velocity 
and axial derivatives of p or W. The principle of con- 
servation of mass in this case can usefully be expressed 
in the integral form 

L? 
P=27[ 

J 
rnjdr (3) 0 

where ri is the volume flow rate through the tube. 
Integrating equation (2) twice with respect to r and 
applying the no-slip boundary condition 

w=O at r=u 

yields 

(4) 

The pressure gradient in this expression can be cal- 
culated from equation (3) to give 

dp Po+PsL 

where 

iii = f,(u,z)f,(a, L) -pg 

” 
I,(r,z) = b(r’,z)]-‘r’dr’ 

J , 

(1 
f2(a, z) = 

J 
I,(r, z)rdr 

0 

f3(rr z) = J L [I?(a, z)]- ’ dz. 0 
These results shall henceforth be referred to as the 
formal solution of equation (2). Note that the inte- 
grals cannot be evaluated at this stage because the 
temperature has yet to be determined as a function of 
position. 

4. THE HEAT TRANSFER EQUATION 

The existing theory of heat transfer in pipes [6] is 
developed here to treat the flow of glass and in par- 
ticular includes a detailed analysis of the radiation 
field in a semi-transparent medium. The differential 
equation of heat transfer under these circumstances is 

. pCp[f$+wg] = ~~[rk.~-ry,] (5) 

where q,(r, T) denotes the r-component of the radi- 
ation flux, kc is the thermal conductivity of the glass 
and C,, is the specific heat capacity. This equation 
includes an axial contribution from convection as 
well as radial contributions from conduction and 
radiation. It is thus assumed that convection is the 
dominant mode of heat transfer along the z-axis and 
that other axial terms can be neglected. This is reason- 
able so long as the flow rate has not been reduced so 
much that the convection is no longer strong. 

Numerical solutions to equation (5) are to be 
sought subject to the boundary conditions 

T(a,:) = TB (WW,, o = 0, 

and 

T(r,O) = To (6) 

where r, and T,, are constants if it is assumed that 
the axial temperature gradient in the wall of the down- 
spout is relatively small. It is interesting to note that 
no condition is specified at its outlet. The reason for 
this is because it is assumed there is strong uni- 
directional flow of heat along the z-coordinate axis. 
The temperature at any point in the glass is therefore 
largely independent of conditions nearer to the end of 
the tube. Patankar [7] draws an analogy between this 
situation and time-dependent heat transfer. The tem- 
perature at a time r is subject to influences from the 
past but is independent of events in the future. The 
same marching integration can therefore be used to 
obtain solutions in both instances. The discretization 
and solution of equation (5) using the finite difference 
method is discussed in further detail in Section 8. 
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5. THE RADIATION FIELD 

The diameters of furnace downspouts are 
sufficiently small to ensure the glass is moderately 
transparent to the radiation within the spout. The 
radiation field is therefore anisotropic and the depen- 
dence of the intensity of the radiation on angular 
direction must be taken into account. In what follows, 
the equation of radiative transfer is taken as a starting 
point and an integral expression for the flux q, is 
obtained. For the purposes of an approximate cal- 
culation it shall be assumed that the absorption 
coefficient of the glass x is constant and that the source 
function S can be calculated using the Stefan-Boltz- 
mann equation [8] 

n*dP 
S=k 

IL 

where ng is the refractive index and cr is the Stefan- 
Boltzmann constant. 

The radiative flux vector q is the first moment of 
the radiation field integrated over all angular direc- 
tions and is given by the expression 

q = mIdR. 

In this, m(O,@) is a unit vector in the direction of 
a pencil of radiation of intensity I,@(0 < 0 < n) is 
the angle of inclination of m to the vertical and 
@(O < CD < 27~) is the azimuth angle (see Fig. 2). The 
r-component of q can be expressed [9] as 

qr = m,IdQ (7) 

where 

m, = sin 0 cos a,. 

The intensity I(s,m) can be calculated using the 
path integral form of the radiative transfer equation. 
In the case of a non-scattering medium this can be 
expressed [lo] as 
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FIG. 2. An arbitrary path length s referred to a system of 

cartesian coordinates. 

I= rexp[-x(s,-s)]- 
I 

“S(T)exp[-~(s’-s)]d~’ 
I 

(8) 

where s is a path length in the direction of m and 
s = s0 at the boundary. For present purposes it is 
useful to adopt the convection of calculating I at the 
point s = 0. This leads to a simpler transfer equation 
but it is important at the same time to remember that 
g(s’-s) must replace g(s’) whenever s # 0. A similar 
argument applies to functions of g&J. Integrating 
equation (8) twice by parts leads to 

=so 

x exp(-s,x)+S+ig+R (9) 

where 

R= --;rexp(-xs’)ds’ (10) 

is the remainder term. Equation (9) is the starting 
point for the integro-differential equation technique. 
This is an iterative procedure using R = 0 as an initial 
guess. 

The constant f is equal to the intensity of the radi- 
ation entering the glass through the boundary at r = a. 
In terms of the special coordinates (s, 0, @) this con- 
dition can be expressed as 

r = I at so = 0. 

For diffusively emitting and reflecting boundaries then 

r = eS(Te)+ C.2 
7r I 

I+(a,z)m,dQ (11) 

where I+@, z) is the intensity of the radiation incident 
on the boundary, E is the coefficient of emissivity of the 
platinum and (1 -E) is the corresponding coefficient of 
reflectivity. 

6. THE TRANSFORMATION OF COORDINATES 

Let r and r’ denote the radial positions of two points 
referring to a system of cylindrical polar coordinates. 
The transformation relating (r’, 0, @) coordinates to 
a system of spherical polars (s, 0, 0) with origin r can 
then be obtained with the help of Figs. 2 and 3. Use 
of the cosine rule gives 

(sinZO)s2+(2rsinOcos@)s+r2-r’* = 0. (12) 

This is a quadratic equation in s and has the solution 

s(T) = 
-rcoscDT(r’*-r2sin2Q)“* 

sin 0 . (13) 

There are three important cases to consider : 

(i) If r < r’ then both roots of equation (12) are real 
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FIG. 3. The projection ofs on to the horizontal plane through 
P. 

but only s( +) is non-negative. The second root must 
therefore be rejected. 

(ii) If r 2 r’ and I@-n] Q sin-’ (r’/r) then both 
roots are real and non-negative (see Fig. 3(a)). Two 
roots are needed because two points share the same 
(r’, a, 0) coordinates. 

(iii) If r z r’ and I@-n] > sin-’ (r’/r) then both 
roots are complex. 

The angle separating cases (ii) and (iii) can be cal- 
culated using the construction in Fig. 3(b). The physi- 
cal significance of this angle is clear from the diagram. 

The path length operator d/ds can be obtained 
in component form using the chain rule for partial 
differentiation. This gives, 

d dr a d# a 
dr=dFdr+dsG 

where 

d.9 as 
G = 5 [1 es, = - cosec 0 set # 

and 

= cosec 0 cosec 0. 

Furthermore, remembering that the source function 
is a function of temperature and that temperature is 
a function of a position and time it follows that 

dS dS 
ds= dr 

-m,- (14) 

and 

1dS 3kdT 16n*a --.-CL-- where ,lq=A 
xh 4n dr 3x 

T’ (15) 

is the coefficient of radiative conductivity. 
In order to calculate the explicit form of 

s’(r, r’, @,O) is it useful to note that 

Substitution of the generalised transformation 

s’(T) = 
-rcos(Q,+d)T[r”-r*sin*(@+4)]“* 

sin 0 

(4 = constant) into this expression then yields 
C$ = Tn. Thus, 

s’(T) = 
rcos@T[r’*-r’sin*@J”* 

sin 0 (16) 

and 

so = s’(r, a, #, 0) = 
rcos@+[u*-r*sin*@]“* 

sin 0 

Since the length of the tube is much greater than its 
diameter it is reasonable to neglect end corrections to 
these equations and to assume that the range of 0 is 
the same as for an infinite tube (i.e. 0 < 0 < n). 

Differentiation of equation (16) with respect to r’ 

gives 

M(f) = 
f r’ dr’ 

sin O[r’* -r* sin* @] ‘I* (17) 

Inserting these results into the chain rule 

d df d --- 
dr’-ds’dr’ 

then leads to 

dS 

‘(id 
= ‘Qdr’ 

and 

$=a2($-;$)+-l$sin2@ (18) 

where a = r’-’ sinO[r’2-r2sin2@]“2. 

7. CALCULATION OF THE RADIATION FLUX 

Substitution of equation (14) into (9) gives 

x exp(-s&+S-!@ x dr +I?. (19) 
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The differential terms in equation (10) can be trans- 
formed in a similar manner but using expressions for 
primed differentials ; see equations (17) and (18) in 
place of equation (10). The only remaining problem 
is then to calculate the new limits of integration. From 
careful consideration of the real positive roots of 
equation (16) it can be shown that 

x {exp [-xs’(+)]+H(r,r’)exp[-xs’(-)]}a-’dr’ 

where 

and 

n = lil+ljl+2 

(Do = n--(r-r’) [n-sin-’ (r’/r)]. 

Here the symbol K,(Z) denotes the repeated integral 

s 

m 
Ki”(Z) = Kin- ,(t) dt (n= 1,2,3,...) 

Z 

where Ki,(Z) = K,,(Z) is a modified Bessel function 
of the second kind [ 111. 

The last step in calculating the radiation flux is to 
integrate equation (11) for I. The procedure is similar 
to the calculation of equation (20) and gives 

H(r-r’) = 
r > r’ 

r < r’ where 

is the Heaviside step function. This equation expresses 
the remainder term as the sum of contributions from 
all points inside the glass and all points on the glass- 
platinum boundary. There are two points to note. 
The first is that the lower limit of integration has been 
chosen to exclude impossible combinations of r’ and 
Q. The second is that the integrand contains two terms 
if two points happen to share the same (r’, 0, @) coor- 
dinates, and one term otherwise. 

The radiation flux in the glass can be calculated 
from equation (7). Inserting equation (19) into this 
expression and interchanging the order of integration 
gives 

n/2 
Fi= 2x-’ I Ki,lZax cos @I cos’@ d@ = Uio(a, a) 

0 

Substituting this result into equation (20) and sim- 
plifying the subsequent expression one obtains, 

(21) 

where 

Y = k,(a) 
(l--E) 11 +3F21 
l-2(1 --E)F, 

U,o(r,u)+1.5U20(r,4 

and 

_ 
-” 

U,,(u,r)-k,$+A (20) 
2(1 -4UIO(rr 4 

A*(r) = A(r)+ , -2(1 --E)F AW 
I 

Equation (21) completes the mathematical for- 
mulation of the heat transfer problem. It is useful to 
note that 

q,(u,z) = 0 whenever E = 0. 

+>-$U,-,(r’,r) dr’ 
I 

This condition is exact and states that a perfectly 
reflecting boundary cannot absorb radiation. It is an 
instructive exercise to show that equation (21) does 

is the contribution of the R integral to the radiation 
flux. The UJr’, r) function is defined as 

indeed have this property. 

Uij(r, r’) = 27r- ’ 
5 

o’ IKin 
8: NUMERICAL SOLUTION 

Numerical solutions of equation (5) and conditions 
+ H(r -r’) Ki,(x y)} cod (@)fl(r, r’, (D) da (6) can be obtained using a suitable finite difference 

scheme. The first step is to combine equations (5) and 
where (21) to give 

x(r, r’, 0) = s’( +) sin 0 

y(r, r’, @) = s’( -) sin 0 

j(r,r’,@) = r’-‘[r”-r2sin2@]‘. where 
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= = 
aT 

-y [ 1 dr 
-A* and k, = k,+k,. 

,=LI 

The nature of the heat transfer problem in a down- 
spout has been discussed in detail in Section 4. To 
simulate cooling it shall be assumed that the tem- 
perature in the glass is equal to To at time t = 0 and 
then satisfies conditions (6) for all t > 0. 

The finite difference method is to be used to cal- 
culate the temperature Ti (i = 0, 1,2,. . , N) at each 
of N grid points spanning the radius of the tube (see 
Fig. 5). The dashed lines and semi-circles in the dia- 
gram indicate the borders of subdomains. To obtain 
a finite difference equation at any particular grid point 
P equation (26) must be integrated over the sub- 
domain surrounding it. In performing the integration 
it is assumed that the temperature varies linearly with 
r, between the grid points. The contribution of the 
convection term can be computed using marching 
integration. The time-dependent term is approximated 
using the assumption that the temperature changes 
from T(t) to T(t+At) at time t and then remains 
constant for the whole of the time step. The axial term 
is treated in a similar fashion. These considerations 
lead to the finite difference relation 

a,Ti(Z, t) = anTi+ l(Z, t)+a,Ti- ,(Z, t)+b:Ti(Z-AZ, 1) 

where 

a, = (k,r),dr; ’ a, = (k,r), dr; ’ 

b, = wi(z, t)pC,AA/Az 6, = pC,AA/Ar 

up = a,+a,+b,+b, A.A = 0.5(r,+r,)Ar. 

Here the subscripts n and s refer to the north and 
south faces of each subdomain. The meaning of the 
distances 6r and Ar is illustrated in Fig. 4. Note a non- 
uniform grid mesh is used because large temperature 
gradients exist in the glass nearest to the tube wall. It is 
therefore economical in computer time to concentrate 
more grid points in this region. 

Equation (22) can be solved using the tri-diagonal 
matrix algorithm (TDMA). The temperature-depen- 
dent coefficients are handled using iteration. First the 
temperature profile is calculated at each of a finite 
number of locations spanning the tube axis. The solu- 
tion is then marched forward one time step and the 
calculation is repeated. This process can be continued 
until the steady state situation is reached. Note the 
flow field is recalculated after each application of the 
TDMA using the formal solution of the Navier- 
Stokes equations presented in Section 3. 

9. DISCUSSION OF THE NUMERICAL 

RESULTS 

The radiative conductivity of glass depends on tem- 
perature and can be calculated using equation (15). 
It is helpful to re-express this formula in the form 

l = Grid mint 

lb) 

i-l .d 

FIG. 4. (a) The finite difference mesh ; (b) the meaning of the 
distance 6r and Ar. 

k, = b,T3 where b, is a constant. Grove and Jellyman 
[ 121 have made measurements of the monochromatic 
absorption coefficients of a number of soda-lime 
glasses each containing a different proportion of iron 
oxide. The measurements were made at several tem- 
peratures between 20 and 1400°C. Grove [13] has 
averaged this data for the purposes of calculating 
radiative conductivities. For a colourless glass con- 
taining 0.02% iron oxide as an impurity his analysis 
gives 

xR= 16m-’ and b,=4.25x10-8Wm-‘K-4 

(1000 < T < 1400°C). This figure is in fact charac- 
teristic for flint glasses in general but the opacities of 
coloured glasses can be larger (of the order 100 m- ‘). 
The significance of this is that darker glasses retain 
their heat for longer. 

Figure 5 illustrates the development of flow and 
temperature profiles at the outlet of a downspout with 
time. Figure 6 depicts the steady state situation at a 
number of different positions along the axis of the 
tube. The results were computed for a diffusively 
reflecting surface (e = 0.25) and are based on the 
following data : 

p = 2400 km m- ’ C,,= 1400Jkg-‘K-’ 

k,=O.gJm-‘K-’ T,, = 1300°C T, = 1200°C 

a=lcm L=20cm H=lm. 
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FIG. 5. The temperature and flow velocity at the end of a 
downspout as a function of the radial coordinate for different 

valuesofthetime:(a)f=Os;(b)f=2s;(c)r=10s. 
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FIG. 6. Steady state flow and temperature profiles at two 
different positions on the z-axis. 

1000 ,100 I200 1300 
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FIG. 7. The mass flow rate as a function of rB for a = I cm. 

It can be seen from the graphs that the onset of cooling 
generates large temperature gradients in the glass and 
causes a rapid reduction in temperature throughout 
its entire volume. The effect of this on the flow is quite 
dramatic. It is notable that the cooling produces an 
almost 50% reduction in the flow rate in just 2 s. Two 
bulk properties of the flow of special interest here are 
the mass flow rate M = pV and the heat dissipation 
P. Under steady state conditions P can be expressed 
as 

P = M&T,-2xpC, 
s 

n(wT),,Lrdr. 
0 

This is just the difference between the energy of the 
glass entering and leaving the tube in one second. 
Since the system is assumed to be in a steady state the 
total energy within the downspout is itself a constant. 

Graphs of M and Pas a function of the temperature 
T, of the platinum are presented in Figs. 7 and 8. It 
is clear from the first graph that the flow rate is a 
sensitive function of T,. This is an encouraging result 
and suggests the flow should be easily controllable. 
One interesting feature of the second graph is that 

FIG. 8. The heat dissipation as a function of rB for a = 1 
cm. 
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FIG. 9. The mass flow rate as a function of r, for a = 2 cm. 

it has a maximum. This turning point indicates the 
minimum power dissipation needed to shut off the 
flow completely. It can be seen that for a tube of 
radius a = 1 cm this is about 1.8 kW. For purposes of 
comparison Figs. 9 and 10 shows graphs of the flow 
rate and the power dissipation for a tube of radius 2 
cm. It is instructive to note that the flow rate in the 
absence of cooling is sixteen times greater through the 
large tube than in the smaller one. The minimum heat 
dissipation needed to stop flow is seen to be about ten 
times larger. The upshot of this is that more elaborate 
and expensive heat exchanger system would be 
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FIG. 10. The heat dissipation as a function of Ts for a = 2 
cm. 

required to extract a disproportionately large amount 
of heat through a surface area of platinum that is only 
double that for a 1 cm tube. 

One other reason high flow rates (M > 100 g s- ‘) 
are more difficult to control than low flow rates is 
because the glass in the middle of a larger tube is more 
insulated. This is important because the first effect of 
cooling is to create large temperature gradients in a 
boundary layer region close to the tube wall. This in 
turn reduces the flow rate and enables the gradual 
freezing to penetrate deeper into the glass. The prob- 
lem that arises is that the flow of hot glass through 
the middle of the tube tends to persist for a period of 
several minutes after the onset of cooling. This time 
lag is increased still further if a coloured glass is used 
or if the cooling is applied to only a part of the length 
of the downspout rather than along its full length. In 
practice, the flow rate of the coolant is important; 
so also is the construction of the jacket around the 
downspout and the entry and exit points for the 
coolant. 
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